SMALL u κ AND LARGE 2 κ FOR SUPERCOMPACT κ
نویسنده
چکیده
Garti and Shelah [2] state that one can force uκ to be κ+ for supercompact κ with 2κ arbitrarily large, using the technique of Džamonja and Shelah [1]. Here we spell out how this can be done. §
منابع مشابه
Indestructibility, HOD, and the Ground Axiom
Let φ1 stand for the statement V = HOD and φ2 stand for the Ground Axiom. Suppose Ti for i = 1, . . . , 4 are the theories “ZFC + φ1 + φ2”, “ZFC + ¬φ1 + φ2”, “ZFC + φ1 + ¬φ2”, and “ZFC + ¬φ1 + ¬φ2” respectively. We show that if κ is indestructibly supercompact and λ > κ is inaccessible, then for i = 1, . . . , 4, Ai =df {δ < κ | δ is an inaccessible cardinal which is not a limit of inaccessible...
متن کاملA Note on Indestructibility and Strong Compactness
If κ < λ are such that κ is both supercompact and indestructible under κ-directed closed forcing which is also (κ+,∞)-distributive and λ is 2λ supercompact, then by [3, Theorem 5], {δ < κ | δ is δ+ strongly compact yet δ isn’t δ+ supercompact} must be unbounded in κ. We show that the large cardinal hypothesis on λ is necessary by constructing a model containing a supercompact cardinal κ in whic...
متن کاملIndestructibility, measurability, and degrees of supercompactness
Suppose that κ is indestructibly supercompact and there is a measurable cardinal λ > κ. It then follows that A1 = {δ < κ | δ is measurable, δ is not a limit of measurable cardinals, and δ is not δ+ supercompact} is unbounded in κ. If in addition λ is 2λ supercompact, then A2 = {δ < κ | δ is measurable, δ is not a limit of measurable cardinals, and δ is δ+ supercompact} is unbounded in κ as well...
متن کاملIndestructibility, instances of strong compactness, and level by level inequivalence
Suppose λ > κ is measurable. We show that if κ is either indestructibly supercompact or indestructibly strong, then A = {δ < κ | δ is measurable, yet δ is neither δ+ strongly compact nor a limit of measurable cardinals} must be unbounded in κ. The large cardinal hypothesis on λ is necessary, as we further demonstrate by constructing via forcing two models in which A = ∅. The first of these cont...
متن کاملSupercompactness and Failures of GCH
Let κ < λ be regular cardinals. We say that an embedding j : V → M with critical point κ is λ-tall if λ < j(κ) and M is closed under κ-sequences in V . Silver showed that GCH can fail at a measurable cardinal κ, starting with κ being κ++-supercompact. Later, Woodin improved this result, starting from the optimal hypothesis of a κ++-tall measurable cardinal κ. Now more generally, suppose that κ ...
متن کامل